Print Error Messages
From ONERR

by Thomas J. Zuchowski
304 Wood Run Ct
Winston-Salem, NC 27103

It is generally a good practice in sophis-
ticated Applesoft programming to use
ONERR...GOTO tc turn the printer off, reset
1/Q hooks, etc. But it is a real inconvenience
during program developmen! to PEEK(222)
forthe error code and then have to look it up
in the manual to find out what error caused
the crash. It isa simple matter to print Apple-
soft error messages from the ONERR routine.
Merely resetthe Onerrflag with a POKE 216,0
and then use the RESUME command to re-
execute the line that caused the error. With
ONERR disabled the second time around, the
error will generate a normal error message
and halt.

DOS ERROR MESSAGES

But what of DOS error messages? There
are DOS errors that are not wise to repeat
without correction, such as the DISK FULL
error, which will trash the disk directory if
the disk is written to without deleting the file
that caused the error in the first place. It
turns out to be very simple to enable the
printing of DOS error messages before exit-
ing to the ONERR routine, thus making the
double error unnecessary. When DOS en-
counters an error, it checks 10 see if the
ONERR flag is set, and if it is, DOS jumps
over its own error message routine, resets
some BASIC pointers, and jumps to the
Applesoft error handler.

To print DOS error messages, all we need
do is remove the jump instruction from DOS.
This is easily done by inserting two NOP
instructions in place of the jump instruction.
Thereafter, the DOS error messages will al-
ways be printed.

DOS normally does a carriage return/line
feed after printing an errormessage, and then
jumps to the Applesoft error handler, which
will print BREAK IN (line #) if ONERR is not
enabled. But if ONERR is being used. the line
number must be PEEKed from memory loca-
tions 218 and 219. This can be done in a very
tidy fashion by skipping the CR/LF routine so
that the line number can be printed on the
same line as the error message. CR/LF is dis-
abled by POKEing NOPs to replace the jump
to the CR/LF routine.

Now that we have tidy DOS error mes-
sages, it might be desirable to have Apple-
soft error messages printed in the same for-
mal. This can’t be done with a simple POKE,
but requires a 14 byte machine language
routine. Have you ever wondered why Apple-
soft error codes are such off-the-wall num-
bers? It's because the number stored in loca-
tion 222 is actually the offset used by the
error message routine to find the correct
message. These messages are stored in a
table in ROM starting at location $D260.
Incidentally, Prof Luebbert's ‘What's Where
in the APPLE? lists these locations as con-
taining Hi-Res graphics routines which is
certainly not the case with my Apple. The
error handler gets a character from the mes-
sage. using the offset. After printing it. it is
checked to see if its high bit is set. In

machine language, the high bit is normally a
sign bit signifying a negative number (when
set). The Apple divides its message by set-
ting this bitin the last character of each mes-
sage. The message routine continues to
print characters from this message table
until it prints one that has a negative value,
that is, has its high bit set. The routine saves
each character on the stack to store it for
sign checking after printing because the
print routine alters the contents of the A
register

HIDING MACHINE CODE IN BASIC
The final trick used by this demo program

savesthe page three space for other machine |

code routines by POKEing directly into a

REM statement
ignores everything that follows a REM, it's a
good place for a short machine code routine.
The two requirements for doing this are that
the REM must contain as many or more
characters than the routine to be imbedded
in it, and it must be the very first line of the
BASIC program so it won't change its loca-
tion in memory if the program is modified.
But since Applesoft will interpret the ma-
chine code routine as BASIC tokens, listing
the REM after running the program |00ks
mighty strange!

in Line 0. Since BASIC|

LISTING 2

JLIST

O REM 444444444443 44+THIS MUST CO
NTAIN AT LEAST 14 CHARACTERS

1 REM SXIXXXXXSXEBE8555558283

3 REM 3ERROR MESSAGE PRINTINGEX

5 REM ¥ FROM ONERR...GOTO =

7 REM SEFXSXSSSEEINEBEXIERNINRLR

10 ONERR GOTO 1000

20 FOR I = 2054 TO 2067

30 READ K
40 POKE I,K: NEXT
50 POKE - 22816,234: POKE - 22

817,234: REM ENABLE DOS ERR
DR MESSAGES

70 POKE - 22802,234: POKE - 22
803,234: POKE - 22804,2T4:
DISABLE CR/LF AFTER DOS ERRO
R MESSAGE

100 REM INSERT PROGRAM HERE

200 NEXT : REM NEXT WITHOUT FOR
ERROR-PUT ANY ERROR YOU L IKE

REM

HERE

1000 E = PEEK (222)

1005 IF E = O OR E > 15 THEN PRINT
: PRINT : CALL 2054: REM APP

LESOFT ERRDR; CALL ROUTINE 1
MBEDDED IN LINE 0O

IFE< >2ANDE < > 3 AND
E< >8ANDE < > 11 THEN
PRINT " ERROR";: REM THESE
MESSAGES INCLUDE ’ERROR’
PRINT CHR$ (7):;" IN LINE *
: PEEK (218) + PEEK (219) %
254

DATA 1&6,222,189,94,210,72,
32,92,219,232, 104, 16, 245, 96

1020

1030

LISTING 1

Applesoft ONERR Error Message Print Routine

0B06— A6 DE LDX $DE
0808- BD 60 D2 LDA $D260, X
080B— 48 PHA

oBoC— 20 SC DB JSR $DBSC
080F — ES8 INX

0810 68 PLA

0oB11- 10 FS BPL $0808
0813- 60 RTS

T T e e

;6et message offset

;s Get character

sPut character on stack
;Print character

s Increment offset to next
scharacter

;Pull old character off
sstack

sCheck i high bit set
sIf not get another char.

